Prevention of ribosome collision-induced neuromuscular degeneration by SARS CoV-2-encoded Nsp1

Proc Natl Acad Sci U S A. 2022 Oct 18;119(42):e2202322119. doi: 10.1073/pnas.2202322119. Epub 2022 Sep 28.

Abstract

An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating age-related neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.

Keywords: Alzheimer’s disease; Nsp1; SARS-CoV-2; ribosome collision; ribosome-associated quality control.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Alzheimer Disease
  • Amyotrophic Lateral Sclerosis
  • Animals
  • COVID-19* / genetics
  • Drosophila
  • Humans
  • Neurodegenerative Diseases* / genetics
  • Pandemics
  • Parkinson Disease
  • Proto-Oncogene Proteins c-akt
  • RNA, Messenger / metabolism
  • RNA-Dependent RNA Polymerase*
  • Ribosomes* / genetics
  • Ribosomes* / metabolism
  • SARS-CoV-2 / genetics
  • Viral Nonstructural Proteins* / metabolism

Substances

  • RNA, Messenger
  • Viral Nonstructural Proteins
  • Proto-Oncogene Proteins c-akt
  • Nsp1 protein, SARS coronavirus
  • RNA-Dependent RNA Polymerase