Puerarin@Chitosan composite for infected bone repair through mimicking the bio-functions of antimicrobial peptides

Bioact Mater. 2022 Sep 20:21:520-530. doi: 10.1016/j.bioactmat.2022.09.005. eCollection 2023 Mar.

Abstract

It is important to eliminate lipopolysaccharide (LPS) along with killing bacteria in periprosthetic joint infection (PJI) therapy for promoting bone repair due to its effect to regulate macrophages response. Although natural antimicrobial peptides (AMPs) offer a good solution, the unknown toxicity, high cost and exogenetic immune response hamper their applications in clinic. In this work, we fabricated a nanowire-like composite material, named P@C, by combining chitosan and puerarin via solid-phase reaction, which can finely mimic the bio-functions of AMPs. Chitosan, serving as the bacteria membrane puncture agent, and puerarin, serving as the LPS target agent, synergistically destroy the bacterial membrane structure and inhibit its recovery, thus endowing P@C with good antibacterial property. In addition, P@C possesses good osteoimmunomodulation due to its ability of LPS elimination and macrophage differentiation modulation. The in vivo results show that P@C can inhibit the LPS induced bone destruction in the Escherichia coli infected rat. P@C exhibits superior bone regeneration in Escherichia coli infected rat due to the comprehensive functions of its superior antibacterial property, and its ability of LPS elimination and immunomodulation. P@C can well mimic the functions of AMPs, which provides a novel and effective method for treating the PJI in clinic.

Keywords: Antibacterial; Chitosan; Lipopolysaccharide; Osteoimmunomodulation; Puerarin.