Fast Polarizable Water Model for Atomistic Simulations

J Chem Theory Comput. 2022 Oct 11;18(10):6324-6333. doi: 10.1021/acs.jctc.2c00378. Epub 2022 Oct 3.

Abstract

Simulating water accurately has been a major challenge in atomistic simulations for decades. Inclusion of electronic polarizability effects holds considerable promise, yet existing approaches suffer from significant computational overheads compared to the widely used nonpolarizable water models. We have developed a globally optimal polarizable water model, OPC3-pol, that explicitly accounts for electronic polarizability with minimal impact on the computational efficiency. OPC3-pol reproduces five key bulk water properties at room temperature with an average relative error of 0.6%. In atomistic simulations, OPC3-pol's computational efficiency is in between that of 3- and 4-point nonpolarizable models; the model supports increased (4 fs) integration time step. OPC3-pol is tested in simulations of globular protein ubiquitin and a B-DNA dodecamer with several AMBER force fields, ff99SB, ff14SB, ff19SB, and OL15, demonstrating structure stability close to reference on multi-microsecond time scale. Simulation of an intrinsically disordered amyloid β-peptide yields an ensemble with the radius of gyration of a random coil. The proposed water model can be trivially adopted by any package that supports standard nonpolarizable force fields and water models; its intended use is in long classical atomistic simulations where water polarization effects are expected to be important.

MeSH terms

  • Amyloid beta-Peptides / chemistry
  • Computer Simulation
  • DNA, B-Form*
  • Molecular Dynamics Simulation
  • Ubiquitins
  • Water* / chemistry

Substances

  • Amyloid beta-Peptides
  • DNA, B-Form
  • Ubiquitins
  • Water