Asymmetric Photocatalysis Enabled by Chiral Organocatalysts

ChemCatChem. 2022 Jan 10;14(1):e202101292. doi: 10.1002/cctc.202101292. Epub 2021 Oct 21.

Abstract

Visible-light photocatalysis has advanced as a versatile tool in organic synthesis. However, attaining precise stereocontrol in photocatalytic reactions has been a longstanding challenge due to undesired photochemical background reactions and the involvement of highly reactive radicals or radical ion intermediates generated under photocatalytic conditions. To address this problem and expand the synthetic utility of photocatalytic reactions, a number of innovative strategies, including mono- and dual-catalytic approaches, have recently emerged. Of these, exploiting chiral organocatalysis, such as enamine catalysis, iminium-ion catalysis, Brønsted acid/base catalysis, and N-heterocyclic carbene catalysis, to induce chirality transfer of photocatalytic reactions has been widely explored. This Review aims to provide a current, comprehensive overview of asymmetric photocatalytic reactions enabled by chiral organocatalysts published through June 2021. The substrate scope, advantages, limitations, and proposed reaction mechanisms of each reaction are discussed. This review should serve as a reference for the development of visible-light-induced asymmetric photocatalysis and promote the improvement of the chemical reactivity and stereoselectivity of these reactions.

Keywords: Asymmetric catalysis; EDA complex; electron/energy transfer; organocatalysis; photoredox catalysis.