Multiplexed bioluminescence imaging with a substrate unmixing platform

Cell Chem Biol. 2022 Nov 17;29(11):1649-1660.e4. doi: 10.1016/j.chembiol.2022.10.004. Epub 2022 Oct 24.

Abstract

Bioluminescent tools can illuminate cellular features in whole organisms. Multi-component tracking remains challenging, though, owing to a lack of well-resolved probes and long imaging times. To address the need for more rapid, quantitative, and multiplexed bioluminescent readouts, we developed an analysis pipeline featuring sequential substrate administration and serial image acquisition. Light output from each luciferin is layered on top of the previous image, with minimal delay between substrate delivery. A MATLAB algorithm was written to analyze bioluminescent images generated from the rapid imaging protocol and deconvolute (i.e., unmix) signals from luciferase-luciferin pairs. Mixtures comprising three to five luciferase reporters were readily distinguished in under 50 min; this same experiment would require days using conventional workflows. We further showed that the algorithm can be used to accurately quantify luciferase levels in heterogeneous mixtures. Based on its speed and versatility, the multiplexed imaging platform will expand the scope of bioluminescence technology.

Keywords: bioluminescence; imaging; luciferase; luciferin; multiplexing; unmixing.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Luciferases / chemistry
  • Luminescent Measurements* / methods

Substances

  • Luciferases