Thiamine Supplementation Alleviates Lipopolysaccharide-Triggered Adaptive Inflammatory Response and Modulates Energy State via Suppression of NFκB/p38 MAPK/AMPK Signaling in Rumen Epithelial Cells of Goats

Antioxidants (Basel). 2022 Oct 18;11(10):2048. doi: 10.3390/antiox11102048.

Abstract

Studies have shown that exogenous thiamine (THI) supplementation can alleviate inflammation and promote rumen epithelial development in goats and cows. This research aimed to evaluate the effect of THI supplementation on LPS-induced inflammation and energy metabolic dysregulation in RECs of goats. Cells were stimulated with either 5 μg/mL THI for 18 h (THI group) or with 5 μg/mL LPS for 6 h (LPS group). The CON group was stimulated with DMEM/F-12 medium without THI for 18 h. The LPTH group was pretreated with THI for 18 h, followed by LPS stimulation for 6 h. THI supplementation decreased the ROS content (p < 0.05), as well as the ratios of phosphorylated (p)-p65 to p65 (p < 0.05) and p-AMPKα to AMPKα (p < 0.05). Interestingly, when the p38 gene was overexpressed in the LPTH group, the ratio of p-p65 to p65 and p-AMPKα to AMPKα proteins significantly increased, and ATP content decreased (p < 0.05). Our results suggest that THI possesses anti-inflammatory and metabolic-modulatory effects in RECs. The mechanism is largely related to the suppression of the NF-κB/p38 MAPK/AMPK signaling pathway. Additionally, we also revealed that THI supplementation can inhibit LPS-induced oxidative damage and apoptosis to protect mitochondrial function in RECs.

Keywords: energy metabolism; inflammation; mitochondrial function; rumen epithelial cells; thiamine.

Grants and funding

This research was funded by the National Natural Science Foundation of China, grant number 31872988 and 31572429, the Excellent Doctoral Dissertation Fund of Yangzhou University and International Academic Exchange Fund for Graduate Students of Yangzhou University.