Artificial intelligence-derived neurofibrillary tangle burden is associated with antemortem cognitive impairment

Acta Neuropathol Commun. 2022 Oct 31;10(1):157. doi: 10.1186/s40478-022-01457-x.

Abstract

Tauopathies are a category of neurodegenerative diseases characterized by the presence of abnormal tau protein-containing neurofibrillary tangles (NFTs). NFTs are universally observed in aging, occurring with or without the concomitant accumulation of amyloid-beta peptide (Aβ) in plaques that typifies Alzheimer disease (AD), the most common tauopathy. Primary age-related tauopathy (PART) is an Aβ-independent process that affects the medial temporal lobe in both cognitively normal and impaired subjects. Determinants of symptomology in subjects with PART are poorly understood and require clinicopathologic correlation; however, classical approaches to staging tau pathology have limited quantitative reproducibility. As such, there is a critical need for unbiased methods to quantitatively analyze tau pathology on the histological level. Artificial intelligence (AI)-based convolutional neural networks (CNNs) generate highly accurate and precise computer vision assessments of digitized pathology slides, yielding novel histology metrics at scale. Here, we performed a retrospective autopsy study of a large cohort (n = 706) of human post-mortem brain tissues from normal and cognitively impaired elderly individuals with mild or no Aβ plaques (average age of death of 83.1 yr, range 55-110). We utilized a CNN trained to segment NFTs on hippocampus sections immunohistochemically stained with antisera recognizing abnormal hyperphosphorylated tau (p-tau), which yielded metrics of regional NFT counts, NFT positive pixel density, as well as a novel graph-theory based metric measuring the spatial distribution of NFTs. We found that several AI-derived NFT metrics significantly predicted the presence of cognitive impairment in both the hippocampus proper and entorhinal cortex (p < 0.0001). When controlling for age, AI-derived NFT counts still significantly predicted the presence of cognitive impairment (p = 0.04 in the entorhinal cortex; p = 0.04 overall). In contrast, Braak stage did not predict cognitive impairment in either age-adjusted or unadjusted models. These findings support the hypothesis that NFT burden correlates with cognitive impairment in PART. Furthermore, our analysis strongly suggests that AI-derived metrics of tau pathology provide a powerful tool that can deepen our understanding of the role of neurofibrillary degeneration in cognitive impairment.

Keywords: Alzheimer’s disease; Computer vision; Convolutional neural network; Deep learning; Digital pathology; Neurofibrillary tangle; Primary age-related tauopathy; Tauopathy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Alzheimer Disease* / pathology
  • Artificial Intelligence
  • Cognitive Dysfunction* / pathology
  • Humans
  • Neurofibrillary Tangles / pathology
  • Plaque, Amyloid / pathology
  • Reproducibility of Results
  • Retrospective Studies
  • Tauopathies* / pathology
  • tau Proteins / analysis

Substances

  • tau Proteins