Antiferromagnet-Ferromagnet Transition in Fe1-xCuxNbO4

Materials (Basel). 2022 Oct 22;15(21):7424. doi: 10.3390/ma15217424.

Abstract

Iron niobates, pure and substituted with copper (Fe1-xCuxNbO4 with x = 0-0.15), were prepared by the solid-state method and characterized by X-ray diffraction, Raman spectroscopy, and magnetic measurements. The results of the structural characterizations revealed the high solubility of Cu ions in the structure and better structural stability compared to the pure sample. The analysis of the magnetic properties showed that the antiferromagnetic-ferromagnetic transition was caused by the insertion of Cu2+ ions into the FeNbO4 structure. The pure FeNbO4 structure presented an antiferromagnetic ordering state, with a Néel temperature of approximately 36.81K. The increase in substitution promoted a change in the magnetic ordering, with the state passing to a weak ferromagnetic order with a transition temperature (Tc) higher than the ambient temperature. The origin of the ferromagnetic ordering could be attributed to the increase in super-exchange interactions between Fe/Cu ions in the Cu2+-O-Fe3+ chains and the formation of bound magnetic polarons in the oxygen vacancies.

Keywords: antiferromagnetic–ferromagnetic; magnetic transition; structure properties.