Inflammatory crosstalk between saturated fatty acids and gut microbiota-white adipose tissue axis

Eur J Nutr. 2023 Apr;62(3):1077-1091. doi: 10.1007/s00394-022-03062-z. Epub 2022 Dec 9.

Abstract

Purpose: High-fat diets have different metabolic responses via gut dysbiosis. In this review, we discuss the complex interaction between the intake of long- and medium-chain saturated fatty acids (SFAs), gut microbiota, and white adipose tissue (WAT) dysfunction, particularly focusing on the type of fat.

Results: The evidence for the impact of dietary SFAs on the gut microbiota-WAT axis has been mostly derived from in vitro and animal models, but there is now also evidence emerging from human studies. Most current reports show that, in response to high long- and medium-chain SFA diets, WAT functions are altered and can be modulated from microbial metabolites in several manners; and it appears to be also modified under conditions of obesity. SFAs overconsumption can reduce bacterial content and disrupt the gut environment. Both long- and medium-chain SFAs may contribute to proinflammatory cytokines release and TLR4 cascade signaling, either by regulation of endotoxemia markers or myristoylated protein. Palmitic and stearic acids have pathological effects on the intestinal epithelium, microbes, and inflammatory and lipogenic WAT profiles. While myristic and lauric acids display somewhat controversial outcomes, from probiotic effects and contribution to weight loss to cardiometabolic alterations from WAT inflammation.

Conclusion: Identifying an interference of distinct types of SFA in the binomial gut microbiota-WAT may elucidate essential mechanisms of metabolic endotoxemia, which may be the key to triggering obesity, innovating the therapeutic tools for this disease.

Keywords: Adipose tissue inflammation; Dysbiosis; Gut microbiome; High-fat diets; Toll-like 4.

Publication types

  • Review

MeSH terms

  • Adipose Tissue / metabolism
  • Adipose Tissue, White / metabolism
  • Animals
  • Diet, High-Fat
  • Endotoxemia*
  • Fatty Acids / metabolism
  • Gastrointestinal Microbiome* / physiology
  • Humans
  • Obesity / metabolism

Substances

  • Fatty Acids