Estimating the Clinical and Economic Impact of Introducing a New Antibacterial into Greek Clinical Practice for the Management of Hospital-Acquired Infections with Limited Treatment Options

Infect Dis Ther. 2023 Feb;12(2):527-543. doi: 10.1007/s40121-022-00743-4. Epub 2022 Dec 21.

Abstract

Introduction: Hospital-acquired infections (HAIs) and growing antimicrobial resistance (AMR) represent a significant healthcare burden globally. Especially in Greece, HAIs with limited treatment options (LTO) pose a serious threat due to increased morbidity and mortality. This study aimed to estimate the clinical and economic value of introducing a new antibacterial for HAIs with LTO in Greece.

Methods: A previously published and validated dynamic model of AMR was adapted to the Greek setting. The model estimated the clinical and economic outcomes of introducing a new antibacterial for the treatment of HAIs with LTO in Greece. The current treatment pathway was compared with introducing a new antibacterial to the treatment sequence. Outcomes were assessed from a third-party payer perspective, over a 10-year transmission period, with quality-adjusted life years (QALYs) and life years (LYs) gained considered over a lifetime horizon.

Results: Over the next 10 years, HAIs with LTO in Greece account for approximately 1.4 million hospital bed days, hospitalisation costs of more than €320 million and a loss of approximately 403,000 LYs (319,000 QALYs). Introduction of the new antibacterial as first-line treatment provided the largest clinical and economic benefit, with savings of up to 93,000 bed days, approximately €21 million in hospitalisation costs and an additional 286,000 LYs (226,000 QALYs) in comparison to the current treatment strategy. The introduction of a new antibacterial was linked to a monetary benefit of €6.8 billion at a willingness to pay threshold of €30,000 over 10 years.

Conclusion: This study highlights the considerable clinical and economic benefit of introducing a new antibacterial for HAIs with LTO in Greece. This analysis shows the additional benefit when a new antibacterial is introduced to treatment sequences. These findings can be used to inform decision makers to implement policies to ensure timely access to new antibacterial treatments in Greece.

Keywords: Antimicrobial resistance; Economic evaluation; Gram-negative bacteria; Hospital-acquired infections; Infectious diseases.

Plain language summary

Antimicrobial resistance is a major issue for the Greek healthcare system. The overuse of antibacterial agents contributes to the growing resistance levels, making currently available treatment options less effective. As a result, there is an imperative need to address antimicrobial resistance in Greece. This study developed a mathematical model to investigate the clinical and economic benefits of introducing a new antibacterial to current treatment practice. The model uses regression equations to describe the relationships between inputs and outputs from a published and validated model, which describes the transmission and treatment of infections. The model is used to estimate the impact of a new treatment in Greece, considering differing treatment sequence scenarios. The largest health and financial benefits were seen when a new antibacterial was introduced at first line prior to currently used treatments. Over 10 years, savings of up to 93,000 hospital bed days and €21 million in hospitalisation costs could be achieved, as well as a gain of 286,000 patient life years and 226,000 patient quality-adjusted life years (QALYs), a measure of a patient’s quality and length of life, over their remaining lifetime. The introduction of a new antibacterial into the current treatment pathway resulted in an overall monetary benefit of €6.8 billion over 10 years, when additional QALYs are valued at €30,000. This study demonstrates considerable health economic benefits of introducing a new antibacterial in Greece and can help inform decision makers when developing a national action plan to combat resistance and improve access to treatments.