Multicolor-tunable room-temperature afterglow and circularly polarized luminescence in chirality-induced coordination assemblies

Chem Sci. 2022 Nov 7;13(46):13922-13929. doi: 10.1039/d2sc05353e. eCollection 2022 Nov 30.

Abstract

Dynamic long-lived multicolor room temperature afterglow and circularly polarized luminescence (CPL) are promising for optoelectronic applications, but integration of these functions into a single-phase chiroptical material is still a difficult and meaningful challenge. Here, a nitrogen-doped benzimidazole molecule 1H-1,2,3-triazolopyridine (Trzpy) showing pure organic room-temperature phosphorescence (RTP) acted as a linker, and then, we propose a chirality-induced coordination assembly strategy to prepare homochiral crystal materials. Two homochiral coordination polymers DCF-10 and LCF-10 not only exhibit multicolor-tunable RTP, the color changed from green to orange under various excitation wavelengths, but also show remarkable excitation-dependent circularly polarized luminescence (CPL), and the dissymmetry factors of CPL in DCF-10 and LCF-10 are 1.8 × 10-3 and 2.4 × 10-3, respectively. Experimental and theoretical studies demonstrated that molecular atmospheres with different aggregation degrees give rise to multiple emission centers for the generation of multicolor-tunable emission. The multicolor-tunable photophysical properties endowed LCF-10 with a huge advantage for multi-level anti-counterfeiting. This work opens up new perspectives for the development and application of color-tunable RTP and CPL.