Effects of Biofuel Crop Switchgrass (Panicum virgatum) Cultivation on Soil Carbon Sequestration and Greenhouse Gas Emissions: A Review

Life (Basel). 2022 Dec 14;12(12):2105. doi: 10.3390/life12122105.

Abstract

Under the macroenvironmental background of global warming, all countries are working to limit climate change. Internationally, biofuel plants are considered to have great potential in carbon neutralization. Several countries have begun using biofuel crops as energy sources to neutralize carbon emissions. Switchgrass (Panicum virgatum) is considered a resource-efficient low-input crop that produces bioenergy. In this paper, we reviewed the effects of switchgrass cultivation on carbon sequestration and greenhouse gas (GHG) emissions. Moreover, the future application and research of switchgrass are discussed and prospected. Switchgrass has huge aboveground and underground biomass, manifesting its huge carbon sequestration potential. The net change of soil surface 30 cm soil organic carbon in 15 years is predicted to be 6.49 Mg ha-1, significantly higher than that of other crops. In addition, its net ecosystem CO2 exchange is about -485 to -118 g C m-2 yr-1, which greatly affects the annual CO2 flux of the cultivation environment. Nitrogen (N) fertilizer is the main source of N2O emission in the switchgrass field. Nitrogen addition increases the yield of switchgrass and also increases the N2O flux of switchgrass soil. It is necessary to formulate the most appropriate N fertilizer application strategy. CH4 emissions are also an important indicator of carbon debt. The effects of switchgrass cultivation on CH4 emissions may be significant but are often ignored. Future studies on GHG emissions by switchgrass should also focus on CH4. In conclusion, as a biofuel crop, switchgrass can well balance the effects of climate change. It is necessary to conduct studies of switchgrass globally with the long-term dimension of climate change effects.

Keywords: biofuel crops; carbon sequestration; greenhouse gas emissions; net ecosystem CO2 exchange; phytoremediation.

Publication types

  • Review

Grants and funding

This research received no external funding.