Baseline Sensitivity and Resistance Mechanism of Colletotrichum Isolates on Tea-Oil Trees of China to Tebuconazole

Phytopathology. 2023 Jun;113(6):1022-1033. doi: 10.1094/PHYTO-09-22-0325-R. Epub 2023 Aug 4.

Abstract

Colletotrichum fungi could cause anthracnose, a destructive disease in tea-oil trees. The sterol demethylation inhibitor (DMI) tebuconazole has been widely used in controlling plant diseases for many years. However, the baseline sensitivity of Colletotrichum isolates on tea-oil trees to tebuconazole has not been determined. In this study, the sensitivity to tebuconazole of 117 Colletotrichum isolates from tea-oil trees of seven provinces in southern China was tested. The mean effective concentration resulted in 50% mycelial growth inhibition (EC50), 0.7625 μg/ml. The EC50 values of 100 isolates (83%) were lower than 1 μg/ml, and those of 20 isolates (17%) were higher than 1 μg/ml, which implied that resistance has already occurred in Colletotrichum isolates on tea-oil trees. The EC50 values of the most resistant and sensitive isolates (named Ca-R and Cc-S1, respectively) were 1.8848 and 0.1561 μg/ml, respectively. The resistance mechanism was also investigated in this study. A gene replacement experiment indicated that the CYP51A/B gene of resistant isolates Ca-R and Cf-R1 cannot confer Cc-S1 full resistance to DMI fungicides, although three single point mutants, Cc-S1CYP51A-T306A and Cc-S1CYP51A-R478K, exhibited decreased sensitivity to DMI fungicides. This result suggested that resistance of Colletotrichum isolates was partly caused by mutations in CYP51A. Moreover, the expression level of CYP51A/B was almost identical among Ca-R, Cf-R1, Cc-S1, and Cc-S1CYP51A point mutants, which indicated that the resistance was irrelevant to the expression level of CYP51A, and other nontarget-based resistance mechanisms may exist. Our results could help to guide the application of DMI fungicides and be useful for investigating the mechanism of resistance.

Keywords: CYP51 genes; Colletotrichum fungi; resistance; tea-oil tree; tebuconazole.

MeSH terms

  • China
  • Colletotrichum* / genetics
  • Fungicides, Industrial* / pharmacology
  • Plant Diseases / microbiology
  • Tea
  • Trees

Substances

  • tebuconazole
  • Fungicides, Industrial
  • Tea