A mycobacterial effector promotes ferroptosis-dependent pathogenicity and dissemination

Nat Commun. 2023 Mar 17;14(1):1430. doi: 10.1038/s41467-023-37148-x.

Abstract

Ferroptosis is a lipid peroxidation-driven and iron-dependent programmed cell death involved in multiple physical processes and various diseases. Emerging evidence suggests that several pathogens manipulate ferroptosis for their pathogenicity and dissemination, but the underlying molecular mechanisms remain elusive. Here, we identify that protein tyrosine phosphatase A (PtpA), an effector secreted by tuberculosis (TB)-causing pathogen Mycobacterium tuberculosis (Mtb), triggers ferroptosis to promote Mtb pathogenicity and dissemination. Mechanistically, PtpA, through its Cys11 site, interacts with host RanGDP to enter host cell nucleus. Then, the nuclear PtpA enhances asymmetric dimethylation of histone H3 arginine 2 (H3R2me2a) via targeting protein arginine methyltransferase 6 (PRMT6), thus inhibiting glutathione peroxidase 4 (GPX4) expression, eventually inducing ferroptosis to promote Mtb pathogenicity and dissemination. Taken together, our findings provide insights into molecular mechanisms of pathogen-induced ferroptosis, indicating a potential TB treatment via blocking Mtb PtpA-host PRMT6 interface to target GPX4-dependent ferroptosis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ferroptosis*
  • Histones / metabolism
  • Humans
  • Lipid Peroxidation
  • Mycobacterium tuberculosis* / metabolism
  • Nuclear Proteins / metabolism
  • Protein Tyrosine Phosphatases / metabolism
  • Protein-Arginine N-Methyltransferases / metabolism
  • Tuberculosis* / microbiology
  • Virulence

Substances

  • Histones
  • Protein Tyrosine Phosphatases
  • PRMT6 protein, human
  • Nuclear Proteins
  • Protein-Arginine N-Methyltransferases