Senescent cardiomyocytes contribute to cardiac dysfunction following myocardial infarction

Res Sq [Preprint]. 2023 Apr 10:rs.3.rs-2776501. doi: 10.21203/rs.3.rs-2776501/v1.

Abstract

Myocardial infarction is a leading cause of morbidity and mortality. While reperfusion is now standard therapy, pathological remodeling leading to heart failure remains a clinical problem. Cellular senescence has been shown to contribute to disease pathophysiology and treatment with the senolytic navitoclax attenuates inflammation, reduces adverse myocardial remodeling and results in improved functional recovery. However, it remains unclear which senescent cell populations contribute to these processes. To identify whether senescent cardiomyocytes contribute to disease pathophysiology post-myocardial infarction, we established a transgenic model in which p16 (CDKN2A) expression was specifically knocked-out in the cardiomyocyte population. Following myocardial infarction, mice lacking cardiomyocyte p16 expression demonstrated no difference in cardiomyocyte hypertrophy but exhibited improved cardiac function and significantly reduced scar size in comparison to control animals. This data demonstrates that senescent cardiomyocytes participate in pathological myocardial remodeling. Importantly, inhibition of cardiomyocyte senescence led to reduced senescence-associated inflammation and decreased senescence-associated markers within other myocardial lineages, consistent with the hypothesis that cardiomyocytes promote pathological remodeling by spreading senescence to other cell-types. Collectively this study presents a novel demonstration that senescent cardiomyocytes are major contributors to myocardial remodeling and dysfunction following a myocardial infarction. Therefore, to maximize the potential for clinical translation, it is important to further understand the mechanisms underlying cardiomyocyte senescence and how to optimize senolytic strategies to target this cell lineage.

Publication types

  • Preprint