Optical measurement of gating pore currents in hypokalemic periodic paralysis model cells

Dis Model Mech. 2023 Jun 1;16(6):dmm049704. doi: 10.1242/dmm.049704. Epub 2023 Jun 27.

Abstract

Hypokalemic periodic paralysis (HypoPP) is a rare genetic disease associated with mutations in CACNA1S or SCN4A encoding the voltage-gated Ca2+ channel Cav1.1 or the voltage-gated Na+ channel Nav1.4, respectively. Most HypoPP-associated missense changes occur at the arginine residues within the voltage-sensing domain (VSD) of these channels. It is established that such mutations destroy the hydrophobic seal that separates external fluid and the internal cytosolic crevices, resulting in the generation of aberrant leak currents called gating pore currents. Presently, the gating pore currents are thought to underlie HypoPP. Here, based on HEK293T cells and by using the Sleeping Beauty transposon system, we generated HypoPP-model cell lines that co-express the mouse inward-rectifier K+ channel (mKir2.1) and HypoPP2-associated Nav1.4 channel. Whole-cell patch-clamp measurements confirmed that mKir2.1 successfully hyperpolarizes the membrane potential to levels comparable to those of myofibers, and that some Nav1.4 variants induce notable proton-based gating pore currents. Importantly, we succeeded in fluorometrically measuring the gating pore currents in these variants by using a ratiometric pH indicator. Our optical method provides a potential in vitro platform for high-throughput drug screening, not only for HypoPP but also for other channelopathies caused by VSD mutations.

Keywords: Gating pore current; Hypokalemic periodic paralysis; Proton; Voltage-gated sodium channel.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cytosol / metabolism
  • HEK293 Cells
  • Humans
  • Hypokalemic Periodic Paralysis* / genetics
  • Hypokalemic Periodic Paralysis* / metabolism
  • Ion Channel Gating
  • Mice
  • Mutation / genetics
  • NAV1.4 Voltage-Gated Sodium Channel / genetics
  • NAV1.4 Voltage-Gated Sodium Channel / metabolism

Substances

  • SCN4A protein, human
  • NAV1.4 Voltage-Gated Sodium Channel