Strong, anisotropic, layer-independent second harmonic generation in multilayer SnS film

Opt Express. 2023 Mar 13;31(6):9779-9789. doi: 10.1364/OE.482269.

Abstract

Materials based on group IV chalcogenides exhibit extensive technologically important properties. Its unusual chemical bonding and off-centering of in-layer sublattices could cause chemical polarity and weakly broken symmetry, making optical field controlling feasible. Here, we fabricated large-area SnS multilayer films and observed unexpected strong SHG response at 1030 nm. The appreciable SHG intensities were obtained with an independence on layer, which is opposite to the generation principle of overall nonzero dipole moment only in odd-layer material. Taking GaAs for reference, the second-order susceptibility was estimated to be 7.25 pm/V enhanced by mixed-chemical bonding polarity. Further polarization-dependent SHG intensity confirmed the crystalline orientation of SnS films. The results imply surface inversion symmetry broken and nonzero polarization field modified by metavalent bonding should be the origin of SHG responses. Our observations establish multilayer SnS as a promising nonlinear material, and will guide in design of IV chalcogenides with improved optics and photonics properties for the potential applications.