Bacterial Lipoproteins Shift Cellular Metabolism to Glycolysis in Macrophages Causing Bone Erosion

Microbiol Spectr. 2023 Jun 15;11(3):e0429322. doi: 10.1128/spectrum.04293-22. Epub 2023 May 16.

Abstract

Belonging to a group of membrane proteins, bacterial lipoproteins (LPPs) are defined by a unique lipid structure at their N-terminus providing the anchor in the bacterial cell membrane. In Gram-positive bacteria, LPPs play a key role in host immune activation triggered through a Toll-like receptor 2 (TLR2)-mediated action resulting in macrophage stimulation and subsequent tissue damage demonstrated in in vivo experimental models. Yet the physiologic links between LPP activation, cytokine release, and any underlying switches in cellular metabolism remain unclear. In this study, we demonstrate that Staphylococcus aureus Lpl1 not only triggers cytokine production but also confers a shift toward fermentative metabolism in bone marrow-derived macrophages (BMDMs). Lpl1 consists of di- and tri-acylated LPP variants; hence, the synthetic P2C and P3C, mimicking di-and tri-acylated LPPs, were employed to reveal their effect on BMDMs. Compared to P3C, P2C was found to shift the metabolism of BMDMs and the human mature monocytic MonoMac 6 (MM6) cells more profoundly toward the fermentative pathway, as indicated by lactate accumulation, glucose consumption, pH reduction, and oxygen consumption. In vivo, P2C caused more severe joint inflammation, bone erosion, and lactate and malate accumulation than P3C. These observed P2C effects were completely abrogated in monocyte/macrophage-depleted mice. Taken together, these findings now solidly confirm the hypothesized link between LPP exposure, a macrophage metabolic shift toward fermentation, and ensuing bone destruction. IMPORTANCE Osteomyelitis caused by S. aureus is a severe infection of the bone, typically associated with severe bone function impairment, therapeutic failure, high morbidity, invalidity, and occasionally even death. The hallmark of staphylococcal osteomyelitis is the destruction of the cortical bone structures, yet the mechanisms contributing to this pathology are hitherto poorly understood. One bacterial membrane constituent found in all bacteria is bacterial lipoproteins (LPPs). Previously, we have shown that injection of purified S. aureus LPPs into wild-type mouse knee joints caused a TLR2-dependent chronic destructive arthritis but failed to elicit such effect in monocyte/macrophage-depleted mice. This observation stirred our interest in investigating the interaction of LPPs and macrophages and analyzing the underlying physiological mechanisms. This ascertainment of LPP-induced changes in the physiology of macrophages provides an important clue in the understanding of the mechanisms of bone disintegration, opening novel avenues to manage the course of S. aureus disease.

Keywords: Pam2Cys; Pam3Cys; bacterial lipoprotein; bone erosion; bone marrow-derived macrophages; cellular metabolism; lactate.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacterial Proteins / metabolism
  • Cytokines / metabolism
  • Glycolysis
  • Humans
  • Lipoproteins / metabolism
  • Macrophages
  • Mice
  • Osteomyelitis*
  • Staphylococcus aureus / metabolism
  • Toll-Like Receptor 2* / metabolism

Substances

  • Toll-Like Receptor 2
  • Cytokines
  • Lipoproteins
  • Bacterial Proteins