EGFR exon 19 insertion EGFR-K745_E746insIPVAIK and others with rare XPVAIK amino-acid insertions: Preclinical and clinical characterization of the favorable therapeutic window to all classes of approved EGFR kinase inhibitors

Lung Cancer. 2023 Jul:181:107250. doi: 10.1016/j.lungcan.2023.107250. Epub 2023 May 13.

Abstract

Background: The epidermal growth factor receptor (EGFR)-K745_E746insIPVAIK and others with XPVAIK amino-acid insertions are exon 19 insertion mutations, which, at the structural modeling level, resemble EGFR tyrosine kinase inhibitor (TKI)-sensitizing mutants. An important unmet need is the characterization of therapeutic windows plus clinical outcomes of exon 19 XPVAIK amino-acid insertion mutations to available EGFR TKIs.

Methods: We used preclinical models of EGFR-K745_E746insIPVAIK and more typical EGFR mutations (exon 19 deletion, L858R, L861Q, G719S, A763_Y764insFQEA, other exon 20 insertion mutations) to probe representative 1st (erlotinib), 2nd (afatinib), 3rd generation (osimertinib), and EGFR exon 20 insertion active (mobocertinib) TKIs. We also compiled outcomes of EGFR exon 19 insertion mutated lung cancers-from our institution plus the literature-treated with EGFR TKIs.

Results: Exon 19 insertions represented 0.3-0.8% of all EGFR kinase domain mutation in two cohorts (n = 1772). Cells driven by EGFR-K745_E746insIPVAIK had sensitivity to all classes of approved EGFR TKIs when compared to cells driven by EGFR-WT in proliferation assays and at the protein level. However, the therapeutic window of EGFR-K745_E746insIPVAIK driven cells was most akin to those of cells driven by EGFR-L861Q and EGFR-A763_Y764insFQEA than the more sensitive patterns seen with cells driven by an EGFR exon 19 deletion or EGFR-L858R. The majority (69.2%, n = 26) of patients with lung cancers harboring EGFR-K745_E746insIPVAIK and other mutations with rare XPVAIK amino-acid insertions responded to clinically available EGFR TKIs (including icotinib, gefitinib, erlotinib, afatinib and osimertinib), with heterogeneous periods of progression-free survival. Mechanisms of acquired EGFR TKI resistance of this mutant remained underreported.

Conclusions: This is the largest preclinical/clinical report to highlight that EGFR-K745_E746insIPVAIK and other mutations with exon 19 XPVAIK amino-acid insertions are rare but sensitive to clinically available 1st, 2nd, and 3rd generation as well as EGFR exon 20 active TKIs; in a pattern that mostly resembles the outcomes of models with EGFR-L861Q and EGFR-A763_Y764insFQEA mutations. These data may help with the off-label selection of EGFR TKIs and clinical expectations of outcomes when targeted therapy is deployed for these EGFR mutated lung cancers.

Keywords: Afatinib; EGFR exon 19 insertion; Erlotinib; K745_E746insIPVAIK; Lung cancer; Mobocertinib; Osimertinib.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Afatinib / therapeutic use
  • Amino Acids / genetics
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • ErbB Receptors / genetics
  • Erlotinib Hydrochloride / therapeutic use
  • Exons
  • Humans
  • Lung Neoplasms* / drug therapy
  • Mutation
  • Protein Kinase Inhibitors / therapeutic use

Substances

  • Afatinib
  • Amino Acids
  • EGFR protein, human
  • ErbB Receptors
  • Erlotinib Hydrochloride
  • mobocertinib
  • osimertinib
  • Protein Kinase Inhibitors