CTRP5 Attenuates Doxorubicin-Induced Cardiotoxicity Via Inhibiting TLR4/NLRP3 Signaling

Cardiovasc Drugs Ther. 2023 May 31. doi: 10.1007/s10557-023-07464-x. Online ahead of print.

Abstract

Background: C1q/tumor necrosis factor-related protein 5 (CTRP5) has been reported to be a crucial regulator in cardiac ischemia/reperfusion (I/R) injury. Nevertheless, the potential role of CTRP5 in doxorubicin (DOX)-induced cardiotoxicity and the potential mechanisms remain largely unclear.

Methods: We overexpressed CTRP5 in the hearts using an adeno-associated virus 9 (AAV9) system through tail vein injection. C57BL/6 mice were subjected to DOX (15 mg/kg/day, i.p.) to generate DOX-induced cardiotoxicity for 4 weeks. Subsequently, cardiac staining and molecular biological analysis were performed to analyze the morphological and biochemical effects of CTRP5 on the cardiac injury. H9c2 cells were used for validation in vitro.

Results: CTRP5 expression was down-regulated after DOX treatment both in vivo and in vitro. CTRP5 overexpression significantly attenuated DOX-induced cardiac injury, cardiac dysfunction, inhibited oxidative stress and inflammatory response. Mechanistically, CTRP5 overexpression markedly decreased the protein expression of toll-like receptor 4 (TLR4), NLRP3, cleaved caspase-1 and caspase-1, indicating TLR/NLRP3 signaling contributes to the cardioprotective role of CTRP5 in DOX-induced cardiotoxicity.

Conclusions: Together, our findings demonstrated that CTRP5 overexpression could protect the heart from oxidative stress and inflammatory injury induced by DOX through inhibiting TLR4/NLRP3 signaling, suggesting that CTRP5 might be a potential therapeutic target in the prevention of DOX-induced cardiotoxicity.

Keywords: CTRP5; Doxorubicin; NLRP3 inflammasome; cardiotoxicity; inflammation; oxidative stress.