Spatial variation and antecedent sea surface temperature conditions influence Hawaiian intertidal community structure

PLoS One. 2023 Jun 2;18(6):e0286136. doi: 10.1371/journal.pone.0286136. eCollection 2023.

Abstract

Global sea surface temperatures (SSTs) are increasing, and in Hawai'i, rates of ocean warming are projected to double by the end of the 21st century. However, current nearshore warming trends and their possible impacts on intertidal communities are not well understood. This study represents the first investigation into the possible effects of rising SST on intertidal algal and invertebrate communities across the Main Hawaiian Islands (MHI). By utilizing citizen-science data coupled with high-resolution, daily SST satellite measurements from 12 intertidal sites across the MHI from 2004-2019, the response of intertidal algal and invertebrate abundance and community diversity to changes in SST was investigated across multiple spatial scales. Results show high rates of SST warming (0.40°C Decade-1) over this study's timeframe, similar to predicted rates of warming for Hawai'i by the end of the 21st century. Changes in abundance and diversity in response to SST were variable among intertidal sites, but differences in antecedent SST among intertidal sites were significantly associated with community dissimilarity. In addition, a statistically significant positive relationship was found between SST and Simpson's diversity index, and a significant relationship was also found between SST and the abundance of six dominant taxa. For five of these six dominant taxa, antecedent SSTs over the 6-12 months preceding sampling were the most influential for describing changes to abundance. The increase in community diversity in response to higher SSTs was best explained by temperatures in the 10 months preceding sampling, and the resultant decreased abundance of dominant turf algae. These results highlight rapidly warming nearshore SSTs in Hawai'i and the longer-term effects of antecedent SSTs as significant drivers of change within Hawaiian intertidal communities. Therefore, we suggest that future research and management should consider the possibility of lagging effects of antecedent SST on intertidal communities in Hawai'i and elsewhere.

MeSH terms

  • Ecosystem*
  • Hawaii
  • Hot Temperature*
  • Temperature

Associated data

  • Dryad/10.5061/dryad.zs7h44jd8

Grants and funding

The author(s) received no specific funding for this work.