Salmonella typhimurium newD and Escherichia coli leuC genes code for a functional isopropylmalate isomerase in Salmonella typhimurium-Escherichia coli hybrids

J Bacteriol. 1979 Mar;137(3):1253-62. doi: 10.1128/jb.137.3.1253-1262.1979.

Abstract

The supQ newD gene substitution system in Salmonella typhimurium restores leucine prototrophy to leuD mutants by providing the newD gene product which is capable of replacing the missing leuD polypeptide in the isopropylmalate isomerase, a complex of the leuC and leuD gene product. Mutations in the supQ gene are required to make the newD protein available. An Escherichia coli F' factor was constructed which carried supQ- newD+ from S. typhimurium on a P22-specialized transducing genome. This F' pro lac (P22dsupQ394newD) episome was transferred into S. typhimurium strains containing th leuD798-ara deletion; the resulting merodiploid strains had a Leu+ phenotype, indicating that supQ- newD+ is dominant over supQ+ newD+, and eliminating the possibility that the supQ gene codes for a repressor of the newD gene. Furthermore, transfer of the F' pro lac (P22dsupQ39newD) into E. coli leuD deletion strains restored leucine prototrophy, showing that the S. typhimurium newD gene can complment the E. coli leuC gene. Growth rates of the S. typhimurium-E coli hybrid strains indicated that the mutant isopropylmalate isomerase in these strains does not induce a leucine limitation, as it does in S. typhimurium leuD supQ mutants. In vitro activity of the mutant isopropylmalate isomerase was demonstrated; the Km values for alpha-isopropylmalate of both the S. typhimurium leuC-newD isomerase and the S. typhimurium-E. coli hybrid isomerase were as much as 100 times higher than the Km values for alpha-isopropylmalate of the wild-type enzyme, which was 3 x 10(-4) M. Mutagenesis of E. coli leuD deletion strains failed to restore leucine prototrophy, indicating that E. coli does not have genes analogous to the S. typhimurium supQ newD genes, of that, if present, activation of a newD is a rare event or is lethal to the cell.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Escherichia coli / enzymology
  • Escherichia coli / genetics*
  • F Factor
  • Genes*
  • Hybridization, Genetic*
  • Hydro-Lyases / genetics*
  • Hydro-Lyases / metabolism
  • Malates
  • Mutation
  • Salmonella typhimurium / enzymology
  • Salmonella typhimurium / genetics*
  • Transduction, Genetic

Substances

  • Malates
  • Hydro-Lyases