Bifidobacterium pseudolongum-generated acetate suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma

J Hepatol. 2023 Dec;79(6):1352-1365. doi: 10.1016/j.jhep.2023.07.005. Epub 2023 Jul 17.

Abstract

Background & aims: Recent studies have highlighted the role of the gut microbiota and their metabolites in non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC). We aimed to identify specific beneficial bacterial species that could be used prophylactically to prevent NAFLD-HCC.

Methods: The role of Bifidobacterium pseudolongum was assessed in two mouse models of NAFLD-HCC: diethylnitrosamine + a high-fat/high-cholesterol diet or + a choline-deficient/high-fat diet. Germ-free mice were used for the metabolic study of B. pseudolongum. Stool, portal vein and liver tissues were collected from mice for non-targeted and targeted metabolomic profiles. Two human NAFLD-HCC cell lines (HKCI2 and HKCI10) were co-cultured with B. pseudolongum-conditioned media (B.p CM) or candidate metabolites.

Results: B. pseudolongum was the top depleted bacterium in mice with NAFLD-HCC. Oral gavage of B. pseudolongum significantly suppressed NAFLD-HCC formation in two mouse models (p < 0.01). Incubation of NAFLD-HCC cells with B.p CM significantly suppressed cell proliferation, inhibited the G1/S phase transition and induced apoptosis. Acetate was identified as the critical metabolite generated from B. pseudolongum in B.p CM, an observation that was confirmed in germ-free mice. Acetate inhibited cell proliferation and induced cell apoptosis in NAFLD-HCC cell lines and suppressed NAFLD-HCC tumor formation in vivo. B. pseudolongum restored heathy gut microbiome composition and improved gut barrier function. Mechanistically, B. pseudolongum-generated acetate reached the liver via the portal vein and bound to GPR43 (G coupled-protein receptor 43) on hepatocytes. GPR43 activation suppressed the IL-6/JAK1/STAT3 signaling pathway, thereby preventing NAFLD-HCC progression.

Conclusions: B. pseudolongum protected against NAFLD-HCC by secreting the anti-tumor metabolite acetate, which reached the liver via the portal vein. B. pseudolongum holds potential as a probiotic for the prevention of NAFLD-HCC.

Impact and implications: Non-alcoholic fatty liver disease-associated hepatocellular carcinoma (NAFLD-HCC) is an increasing healthcare burden worldwide. There is an urgent need to develop effective agents to prevent NAFLD-HCC progression. Herein, we show that the probiotic Bifidobacterium pseudolongum significantly suppressed NAFLD-HCC progression by secreting acetate, which bound to hepatic GPR43 (G coupled-protein receptor 43) via the gut-liver axis and suppressed the oncogenic IL-6/JAK1/STAT3 signaling pathway. Bifidobacterium pseudolongum holds potential as a novel probiotic for NAFLD-HCC prevention.

Keywords: Acetate; B. pseudolongum; Microbiota; NAFLD-HCC; Probiotics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acetates
  • Animals
  • Carcinoma, Hepatocellular* / etiology
  • Carcinoma, Hepatocellular* / metabolism
  • Carcinoma, Hepatocellular* / prevention & control
  • Diet, High-Fat / adverse effects
  • Disease Models, Animal
  • Humans
  • Interleukin-6 / metabolism
  • Liver / pathology
  • Liver Neoplasms* / etiology
  • Liver Neoplasms* / metabolism
  • Liver Neoplasms* / prevention & control
  • Mice
  • Microbiota
  • Non-alcoholic Fatty Liver Disease* / metabolism

Substances

  • Interleukin-6
  • Acetates

Supplementary concepts

  • Bifidobacterium pseudolongum