[IL-33 up-regulates eIF3a expression by activating NF-κB signaling pathway to mediate the proliferation and differentiation of mouse pulmonary myofibroblasts and aggravate pulmonary fibrosis]

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2023 Aug;39(8):693-700.
[Article in Chinese]

Abstract

Objective To investigate the effects and mechanism of Interleukin-33 (IL-33) mediated proliferation and differentiation of pulmonary myofibroblasts (MFbs) in pulmonary fibrosis (PF). Methods C57BL/6 mice were randomly divided into four groups: a control group, a bleomycin (BLM) group, a BLM combined with IL-33 group and a BLM combined with anti-IL-33 antibody group, 12 mice in each group. The PF model was induced by intratracheal injection of BLM (5000 U/kg). The degrees of fibrosis were examined using HE and Masson staining. ELISA was used to measure the plasma levels of IL-33. Immunohistochemical staining was used to measure the expression of alpha smooth muscle actin (α-SMA) in lung tissue. Primary pulmonary fibroblasts were isolated and cultured from lung tissues of mice. The cells were divided into four groups: a control group, an IL-33 group, an IL-33 combined with dimethyl sulfoxide (DMSO) group and an IL-33 combined with pyrrolidine dithiocarbamate (PDTC) group. The cells were treated with DMSO or PDTC for 1 hour and then with IL-33 for 48 hours. Cell proliferation was measured by 5-ethynyl-2'-deoxyuridine (EdU) assay and cell cycle was measured by flow cytometry. TranswellTM assay was used to analyze cell migration. Real-time quantitative PCR was used to measure the expression of collagen type I (Col1), Col3 and α-SMA mRNA. The protein levels of IL-33, Col1, Col3, α-SMA, eukaryotic initiation factor 3a (eIF3a), phosphorylated IκBα (p-IκBα) (total lysate), p-NF-κB p65(total lysate) and NF-κB p65 (nucleus) were measured by Western blot analysis. Results In vivo, compared with the control group, the expressions of IL-33, p-IκBα (total lysate), p-NF-κB p65 (total lysate), NF-κB p65(nucleus), eIF3a, α-SMA, Col1 and Col3 in the BLM group significantly increased. Compared with the BLM group, the expressions of p-IκBα (total lysate), p-NF-κB p65 (total lysate), NF-κB p65 (nucleus), eIF3a, α-SMA, Col1 and Col3 in the IL-33 group increased further and the PF was further aggravated. But the effect of anti-IL-33 antibody was just opposite to that of IL-33. In vitro, IL-33 markedly induced the proliferation and migration of pulmonary fibroblasts, and significantly up-regulated the expression of p-IκBα (total lysate), p-NF-κB p65(total lysate), NF-κB p65 (nucleus), eIF3a, α-SMA, Col1 and Col3. But all these effects of IL-33 were reversed by pyrrolidine dithiocarbamate. Conclusion The results suggest that IL-33 may promote the expression of eIF3a by activating NF-κB signaling pathway, thus inducing the proliferation and differentiation of MFbs and promoting the occurrence and development of PF.

Publication types

  • English Abstract

MeSH terms

  • Animals
  • Bleomycin / adverse effects
  • Bleomycin / metabolism
  • Cell Differentiation
  • Cell Proliferation
  • Dimethyl Sulfoxide / pharmacology
  • Eukaryotic Initiation Factor-3* / metabolism
  • Fibroblasts
  • Interleukin-33 / metabolism
  • Interleukin-33 / pharmacology
  • Mice
  • Mice, Inbred C57BL
  • Myofibroblasts / metabolism
  • NF-KappaB Inhibitor alpha / metabolism
  • NF-kappa B / metabolism
  • Pulmonary Fibrosis*
  • Signal Transduction

Substances

  • Bleomycin
  • Dimethyl Sulfoxide
  • Il33 protein, mouse
  • Interleukin-33
  • NF-kappa B
  • NF-KappaB Inhibitor alpha
  • prolinedithiocarbamate
  • pyrrolidine dithiocarbamic acid
  • Eif3a protein, mouse
  • Eukaryotic Initiation Factor-3