Inhibition of skeletal muscle Lands cycle ameliorates weakness induced by physical inactivity

bioRxiv [Preprint]. 2023 Jul 28:2023.07.25.550576. doi: 10.1101/2023.07.25.550576.

Abstract

Background: Lipid hydroperoxides (LOOH) have been implicated in skeletal muscle atrophy with age and disuse. Lysophosphatidylcholine acyltransferase 3 (LPCAT3), an enzyme of Lands cycle, conjugates a polyunsaturated fatty acyl chain to a lysophospholipid (PUFA-PL) molecule, providing substrates for LOOH propagation. Previous studies suggest that inhibition of Lands cycle is an effective strategy to suppress LOOH. Mice with skeletal muscle-specific tamoxifen-inducible knockout of LPCAT3 (LPCAT3-MKO) were utilized to determine if muscle-specific attenuation of LOOH may alleviate muscle atrophy and weakness with disuse.

Methods: LPCAT3-MKO and control mice underwent 7 days of sham or hindlimb unloading (HU model) to study muscle mass and force-generating capacity. LOOH was assessed by quantifying 4-hydroxynonenal (4-HNE)-conjugated peptides. Quantitative PCR and lipid mass spectrometry were used to validate LPCAT3 deletion.

Results: 7 days of HU was sufficient to induce muscle atrophy and weakness concomitant to an increase in 4-HNE. Deletion of LPCAT3 reversed HU-induced increase in muscle 4HNE. No difference was found in body mass, body composition, or caloric intake between genotypes. The soleus (SOL) and plantaris (PLANT) muscles of the LPCAT3-MKO mice were partially protected from atrophy compared to controls, concomitant to attenuated decrease in cross-sectional areas in type I and IIa fibers. Strikingly, SOL and extensor digitorum longus (EDL) were robustly protected from HU-induced reduction in force-generating capacity in the LPCAT3-MKO mice compared to controls.

Conclusion: Our findings demonstrate that attenuation of muscle LOOH is sufficient to restore skeletal muscle function, in particular a protection from reduction in muscle specific force. Thus, muscle LOOH contributes to atrophy and weakness induced by HU in mice.

Keywords: atrophy; disuse; lipid hydroperoxides; phospholipids; skeletal muscle.

Publication types

  • Preprint