Comparative Clustering (CompaCt) of eukaryote complexomes identifies novel interactions and sheds light on protein complex evolution

PLoS Comput Biol. 2023 Aug 7;19(8):e1011090. doi: 10.1371/journal.pcbi.1011090. eCollection 2023 Aug.

Abstract

Complexome profiling allows large-scale, untargeted, and comprehensive characterization of protein complexes in a biological sample using a combined approach of separating intact protein complexes e.g., by native gel electrophoresis, followed by mass spectrometric analysis of the proteins in the resulting fractions. Over the last decade, its application has resulted in a large collection of complexome profiling datasets. While computational methods have been developed for the analysis of individual datasets, methods for large-scale comparative analysis of complexomes from multiple species are lacking. Here, we present Comparative Clustering (CompaCt), that performs fully automated integrative analysis of complexome profiling data from multiple species, enabling systematic characterization and comparison of complexomes. CompaCt implements a novel method for leveraging orthology in comparative analysis to allow systematic identification of conserved as well as taxon-specific elements of the analyzed complexomes. We applied this method to a collection of 53 complexome profiles spanning the major branches of the eukaryotes. We demonstrate the ability of CompaCt to robustly identify the composition of protein complexes, and show that integrated analysis of multiple datasets improves characterization of complexes from specific complexome profiles when compared to separate analyses. We identified novel candidate interactors and complexes in a number of species from previously analyzed datasets, like the emp24, the V-ATPase and mitochondrial ATP synthase complexes. Lastly, we demonstrate the utility of CompaCt for the automated large-scale characterization of the complexome of the mosquito Anopheles stephensi shedding light on the evolution of metazoan protein complexes. CompaCt is available from https://github.com/cmbi/compact-bio.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cluster Analysis
  • Eukaryota*
  • Eukaryotic Cells / metabolism
  • Mass Spectrometry / methods
  • Proteins* / metabolism

Substances

  • Proteins

Grants and funding

JS and ACO were supported by the Netherlands Organization for Health Research and Development (ZonMW; TOP 91217009), awarded to MAH and UB. ML was supported by a TOP Grant from the Netherlands Organization for Scientific Research (NWO; TOP 714.017.00 4), awarded to UB. FE and TWAK were supported by the Netherlands Organisation for Scientific Research (NWO-VIDI 864.13.009), awarded to TWAK. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.