A three-state mechanism for trifluoroethanol denaturation of an intrinsically disordered protein (IDP)

J Biochem. 2023 Nov 30;174(6):519-531. doi: 10.1093/jb/mvad067.

Abstract

Relating the amino acid composition and sequence to chain folding and binding preferences of intrinsically disordered proteins (IDPs) has emerged as a huge challenge. While globular proteins have respective 3D structures that are unique to their individual functions, IDPs violate this structure-function paradigm because rather than having a well-defined structure an ensemble of rapidly interconverting disordered structures characterize an IDP. This work measures 2,2,2-trifluoroethanol (TFE)-induced equilibrium transitions of an IDP called AtPP16-1 (Arabidopsis thaliana phloem protein type 16-1) by using fluorescence, circular dichroism, infrared and nuclear magnetic resonance (NMR) methods at pH 4, 298 K. Low TFE reversibly removes the tertiary structure to produce an ensemble of obligate intermediate ($\mathrm{I}$) retaining the native-state ($\mathrm{N}$) secondary structure. The intermediate $\mathrm{I}$ is preceded by a non-obligate tryptophan-specific intermediate ${\mathrm{I}}_{\mathrm{w}}$ whose population is detectable for AtPP16-1 specifically. Accumulation of such non-obligate intermediates is discriminated according to the sequence composition of the protein. In all cases, however, a tertiary structure-unfolded general obligate intermediate $\mathrm{I}$ is indispensable. The $\mathrm{I}$ ensemble has higher helical propensity conducive to the acquisition of an exceedingly large level of α-helices by a reversible denaturation transition of $\mathrm{I}$ to the denatured state $\mathrm{D}$ as the TFE level is increased. Strikingly, it is the same $\mathrm{N}\rightleftharpoons \mathrm{I}\rightleftharpoons \mathrm{D}$ scheme typifying the TFE transitions of globular proteins. The high-energy state $\mathrm{I}$ characterized by increased helical propensity is called a universal intermediate encountered in both genera of globular and disordered proteins. Neither $\mathrm{I}$ nor $\mathrm{D}$ strictly show molten globule (MG)-like properties, dismissing the belief that TFE promotes MGs.

Keywords: TFE denaturation of proteins; protein–TFE interactions; three-state protein denaturation by TFE; α-helical propensity of proteins in aqueous TFE.

MeSH terms

  • Amino Acids
  • Circular Dichroism
  • Intrinsically Disordered Proteins*
  • Protein Denaturation
  • Protein Folding
  • Protein Structure, Secondary
  • Trifluoroethanol / chemistry
  • Trifluoroethanol / pharmacology

Substances

  • Intrinsically Disordered Proteins
  • Trifluoroethanol
  • Amino Acids