Dual-layer spectral-detector CT for predicting microsatellite instability status and prognosis in locally advanced gastric cancer

Insights Imaging. 2023 Sep 19;14(1):151. doi: 10.1186/s13244-023-01490-x.

Abstract

Objective: To construct and validate a prediction model based on dual-layer detector spectral CT (DLCT) and clinico-radiologic features to predict the microsatellite instability (MSI) status of gastric cancer (GC) and to explore the relationship between the prediction results and patient prognosis.

Methods: A total of 264 GC patients who underwent preoperative DLCT examination were randomly allocated into the training set (n = 187) and validation set (n = 80). Clinico-radiologic features and DLCT parameters were used to build the clinical and DLCT model through multivariate logistic regression analysis. A combined DLCT parameter (CDLCT) was constructed to predict MSI. A combined prediction model was constructed using multivariate logistic regression analysis by integrating the significant clinico-radiologic features and CDLCT. The Kaplan-Meier survival analysis was used to explore the prognostic significant of the prediction results of the combined model.

Results: In this study, there were 70 (26.52%) MSI-high (MSI-H) GC patients. Tumor location and CT_N staging were independent risk factors for MSI-H. In the validation set, the area under the curve (AUC) of the clinical model and DLCT model for predicting MSI status was 0.721 and 0.837, respectively. The combined model achieved a high prediction efficacy in the validation set, with AUC, sensitivity, and specificity of 0.879, 78.95%, and 75.4%, respectively. Survival analysis demonstrated that the combined model could stratify GC patients according to recurrence-free survival (p = 0.010).

Conclusion: The combined model provides an efficient tool for predicting the MSI status of GC noninvasively and tumor recurrence risk stratification after surgery.

Critical relevance statement: MSI is an important molecular subtype in gastric cancer (GC). But MSI can only be evaluated using biopsy or postoperative tumor tissues. Our study developed a combined model based on DLCT which could effectively predict MSI preoperatively. Our result also showed that the combined model could stratify patients according to recurrence-free survival. It may be valuable for clinicians in choosing appropriate treatment strategies to avoid tumor recurrence and predicting clinical prognosis in GC.

Key points: • Tumor location and CT_N staging were independent predictors for MSI-H in GC. • Quantitative DLCT parameters showed potential in predicting MSI status in GC. • The combined model integrating clinico-radiologic features and CDLCT could improve the predictive performance. • The prediction results could stratify the risk of tumor recurrence after surgery.

Keywords: Dual-layer spectral detector CT; Gastric cancer; Microsatellite instability; Nomogram; Quantitative parameters.