Silk protein sericin: a promising therapy for Achilles tendinopathy-evidence from an experimental rat model

Clin Rheumatol. 2023 Dec;42(12):3361-3373. doi: 10.1007/s10067-023-06767-6. Epub 2023 Sep 21.

Abstract

Objective: This study investigated the efficacy of sericin in treating experimental Achilles tendinopathy (AT) in rats via the transforming growth factor-beta (TGF-β)/mothers against decapentaplegic (Smad) pathway compared with diclofenac sodium (DS).

Method: An AT model was induced in rats using collagenase enzyme type I and divided into 5 groups: C (control), AT (diseased control), ATS (AT treated with sericin), ATN (AT treated with DS), and ATSN (AT treated with sericin and DS). Sericin injection was given on the 3rd and 6th days by intratendinous injection (0.8 g/kg/mL), and DS was administered for 14 days by oral gavage (1.1 mg/kg/day). Serum concentrations of total oxidant-antioxidant status (TOS-TAS), TGF-β1, decorin, Smad2, and connective tissue growth factor (CTGF) were measured. Histopathologic and immunohistochemical (IHC) studies were conducted on Achilles tendon samples.

Results: The TOS, oxidative stress index (OSI), TGF-β1, Smad2, CTGF, and decorin serum concentrations were significantly higher in AT than in C and significantly lower in ATS than in AT (P<0.05). Histopathological examination revealed that irregular fibers, degeneration, and round cell nuclei were significantly elevated in AT. Spindle-shaped fibers were similar to those in C, and degeneration was reduced in ATS. TGF-β1 and Smad2/3 expression was increased, and collagen type I alpha-1 (Col1A1) expression was decreased in AT vs. C (P=0.001). In the ATS, TGF-β1 and Smad2/3 expression decreased, and Col1A1 expression increased. The Bonar score significantly increased in the AT group (P =0.001) and significantly decreased in the ATS group (P =0.027).

Conclusion: Sericin shows potential efficacy in reducing oxidative stress and modulating the TGF-β/Smad pathway in experimental AT models in rats. It may be a promising therapeutic agent for AT, warranting further clinical studies for validation. Key Points • This study revealed that sericin mitigates AT-induced damage through the TGF-β/Smad pathway in an AT rat model. • ELISA and IHC investigations corroborated the effectiveness of sericin via the pivotal TGF-β/Smad pathway in tissue repair. • Evidence indicates that sericin enhances collagen synthesis,shapes tendon fiber structure, and diminishes histopathological degeneration. • Sericin's antioxidant properties were reaffirmed in its AT treatment application.

Keywords: Achilles tendinopathy; Diclofenac sodium; Sericin; Smad; TGF-β.

MeSH terms

  • Achilles Tendon*
  • Animals
  • Antioxidants / therapeutic use
  • Decorin
  • Rats
  • Sericins* / pharmacology
  • Sericins* / therapeutic use
  • Tendinopathy* / drug therapy
  • Transforming Growth Factor beta / metabolism
  • Transforming Growth Factor beta1

Substances

  • Transforming Growth Factor beta1
  • Sericins
  • Decorin
  • Antioxidants
  • Transforming Growth Factor beta