Co(II)-Based Metal-Organic Framework Derived CA-CoNiMn-CLDHs with Peroxidase-like Activity for Colorimetric Detection of Phenol

Materials (Basel). 2023 Sep 14;16(18):6212. doi: 10.3390/ma16186212.

Abstract

Given the serious harm of toxic phenol to human health and the ecological environment, it is urgent to develop an efficient, low-cost and sensitive nanoenzyme-based method to monitor phenol. MOF-derived nanozyme has attracted wide interest due to its hollow polyhedra structure and porous micro-nano frameworks. However, it is still a great challenge to synthesize MOF-derived multimetal synergistic catalytic nanoenzymes in large quantities with low cost. Herein, we reported the synthetic strategy of porous hollow CA-CoNiMn-CLDHs with ZIF-67 as templates through a facile solvothermal reaction. The prepared trimetallic catalyst exhibits excellent peroxidase-like activity to trigger the oxidative coupling reaction of 4-AAP and phenol in the presence of H2O2. The visual detection platform for phenol based on CA-CoNiMn-CLDHs is constructed, and satisfactory results are obtained. The Km value for CA-CoNiMn-CLDHs (0.21 mM) is lower than that of HRP (0.43 mM) with TMB as the chromogenic substrate. Because of the synergistic effect of peroxidase-like activity and citric acid functionalization, the built colorimetric sensor displayed a good linear response to phenol from 1 to 100 μM with a detection limit of 0.163 μM (3σ/slope). Additionally, the CA-CoNiMn-CLDHs-based visual detection platform possesses high-chemical stability and excellent reusability, which can greatly improve economic benefits in practical applications.

Keywords: colorimetric detection; metal organic framework; nanozyme; phenol.