Discovery of NSD2-Degraders from Novel and Selective DEL Hits

Chembiochem. 2023 Dec 14;24(24):e202300515. doi: 10.1002/cbic.202300515. Epub 2023 Oct 24.

Abstract

NSD2 is a histone methyltransferase predominantly catalyzing di-methylation of histone H3 on lysine K36. Increased NSD2 activity due to mutations or fusion-events affecting the gene encoding NSD2 is considered an oncogenic event and a driver in various cancers, including multiple myelomas carrying t(4;14) chromosomal translocations and acute lymphoblastic leukemia's expressing the hyperactive NSD2 mutant E1099 K. Using DNA-encoded libraries, we have identified small molecule ligands that selectively and potently bind to the PWWP1 domain of NSD2, inhibit NSD2 binding to H3K36me2-bearing nucleosomes, but do not inhibit the methyltransferase activity. The ligands were subsequently converted to selective VHL1-recruiting NSD2 degraders and by using one of the most efficacious degraders in cell lines, we show that it leads to NSD2 degradation, decrease in K3 K36me2 levels and inhibition of cell proliferation.

Keywords: DEL; NSD2; PROTACS; VHL1; selectivity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Histone-Lysine N-Methyltransferase* / metabolism
  • Histones* / metabolism
  • Methylation
  • Nucleosomes

Substances

  • Histone-Lysine N-Methyltransferase
  • Histones
  • Nucleosomes