OSCAA: A Two-Dimensional Gaussian Mixture Model for Copy Number Variation Association Analysis

bioRxiv [Preprint]. 2023 Sep 28:2023.09.25.559392. doi: 10.1101/2023.09.25.559392.

Abstract

Copy number variants (CNVs) are prevalent in the human genome which provide profound effect on genomic organization and human diseases. Discovering disease associated CNVs is critical for understanding the pathogenesis of diseases and aiding their diagnosis and treatment. However, traditional methods for assessing the association between CNVs and disease risks adopt a two-stage strategy conducting quantitative CNV measurements first and then testing for association, which may lead to biased association estimation and low statistical power, serving as a major barrier in routine genome wide assessment of such variation. In this article, we developed OSCAA, a flexible algorithm to discover disease associated CNVs for both quantitative and qualitative traits. OSCAA employs a two-dimensional Gaussian mixture model that is built upon the principal components from copy number intensities, accounting for technical biases in CNV detection while simultaneously testing for their effect on outcome traits. In OSCAA, CNVs are identified and their associations with disease risk are evaluated simultaneously in a single step, taking into account the uncertainty of CNV identification in the statistical model. Our simulations demonstrated that OSCAA outperformed the existing one-stage method and traditional two-stage methods by yielding a more accurate estimate of the CNV-disease association, especially for short CNVs or CNVs with weak signal. In conclusion, OSCAA is a powerful and flexible approach for CNV association testing with high sensitivity and specificity, which can be easily applied to different traits and clinical risk predictions.

Publication types

  • Preprint