Endoplasmic Reticulum-Targeted Aggregation-Induced Emission Luminogen for Synergetic Tumor Ablation with Glibenclamide

ACS Appl Mater Interfaces. 2023 Oct 30. doi: 10.1021/acsami.3c10940. Online ahead of print.

Abstract

Photodynamic therapy based on fluorescence illumination of subcellular organelles and in situ bursts of reactive oxygen species (ROS) has been recognized as a promising strategy for cancer theranostics. However, the short life of ROS and unclarified anticancer mechanism seriously restrict the application. Herein, we rationally designed and facilely synthesized a 2,6-dimethylpyridine-based triphenylamine (TPA) derivative TPA-DMPy with aggregation-induced emission (AIE) features and production of type-I ROS. Except for its selective binding to the endoplasmic reticulum (ER), TPA-DMPy, in synergy with glibenclamide, a medicinal agent used against diabetes, induced significant apoptosis of cancer cells in vitro and in vivo. Additionally, TPA-DMPy greatly incited the release of calcium from ER upon light irradiation to further aggravate the depolarization of ER membrane potential caused by glibenclamide, thus inducing fatal ER stress and crosstalk between ER and mitochondria. Our study extends the biological design and application of AIE luminogens and provides new insights into discovering novel anticancer targets and agents.

Keywords: ATP-sensitive potassium channels; aggregation-induced emission; calcium; cancer theranostics; endoplasmic reticulum stress.