Antiadipogenic Effect of Citrus Flavonoids: Evidence from RNA Sequencing Analysis and Activation of AMPK in 3T3-L1 Adipocytes

J Agric Food Chem. 2023 Nov 22;71(46):17788-17800. doi: 10.1021/acs.jafc.3c03559. Epub 2023 Nov 13.

Abstract

Citrus fruits are rich in dietary flavonoids and have many health benefits, but their antiadipogenic mechanism of action and their impact on lipid metabolism remain unclear. In this study, we investigated the effect of citrus flavonoids, namely, hesperidin (HES), narirutin (NAR), nobiletin (NOB), sinensetin (SIN), and tangeretin (TAN), on preventing fat cell development by gene expression in 3T3-L1 adipocytes. Among the citrus flavonoids tested, HES and NAR significantly reduced fat storage and triglyceride levels and increased glucose uptake in 3T3-L1 adipocytes. Additionally, HES and NAR treatment increased the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) while reducing the protein expression of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR). Furthermore, in silico docking revealed that flavonoids activate AMPK. RNA sequencing analysis demonstrated that citrus flavonoids normalized the expression of 40 genes, which were either upregulated by more than 2-fold or downregulated by less than 0.6-fold including Acadv1, Acly, Akr1d1, Awat1, Cyp27a1, Decr1, Dhrs4, Elovl3, Fasn, G6pc, Gba, Hmgcs1, Mogat2, Lrp5, Sptlc3, and Snca to levels comparable to the control group. Altogether, HES and NAR among five citrus flavonoids showed antiadipogenic effects by regulating the expression of specific lipid metabolism genes partially restored to control levels in 3T3-L1 cells.

Keywords: adipogenesis; gene ontology; lipid metabolism; molecular docking; protein−protein interaction.

MeSH terms

  • 3T3-L1 Cells
  • AMP-Activated Protein Kinases* / genetics
  • AMP-Activated Protein Kinases* / metabolism
  • Adipocytes / metabolism
  • Adipogenesis
  • Animals
  • Citrus* / metabolism
  • Flavonoids / metabolism
  • Flavonoids / pharmacology
  • Mice
  • Sequence Analysis, RNA

Substances

  • AMP-Activated Protein Kinases
  • Flavonoids