3-Fluoro-2 H-azirine: Generation, Characterization, and Photochemistry

J Phys Chem A. 2023 Dec 21;127(50):10591-10599. doi: 10.1021/acs.jpca.3c06076. Epub 2023 Dec 8.

Abstract

The elusive 3-fluoro-2H-azirine, cyclic NCH2CF, has been generated through the stepwise decomposition of the acryloyl azide CH2CFC(O)N3 in an N2-matrix at 10 K. The characterization of cyclic NCH2CF with matrix-isolation IR spectroscopy is supported by 15N isotope labeling and the calculations with density functional theory (DFT) at the B3LYP/6-311++G(3df,3pd) level of theory. Upon irradiation at 193 nm, cyclic NCH2CF undergoes ring opening by forming the more stable nitrile isomer CH2FCN. In contrast to the photodecomposition reactions, the high-vacuum flash pyrolysis of CH2CFC(O)N3 in the gas phase at 500 °C yields the Curtius rearrangement product CH2CFNCO along with secondary fragmentation to the atmospherically relevant fluorocarbonyl radical (FCO) and cyanomethyl radical (CH2CN). Calculations on the potential energy profile for the decomposition reactions of CH2CFC(O)N3 demonstrate that the excessive energy, arising from the highly exothermic Curtius rearrangement of the azide, plays a key role in driving further dissociation reactions of CH2CFNCO by overcoming the formidable barriers (>50 kcal mol-1) under the pyrolysis conditions.