Cell cycle regulation by ADP and IGF-1 in cultured late developing glia progenitors of the avian retina

Purinergic Signal. 2023 Dec 27. doi: 10.1007/s11302-023-09982-7. Online ahead of print.

Abstract

In the avian retina, ADP induces the proliferation of late developing glia progenitors. Here, we show that in serum-containing retinal cell cultures, ADP-induced increase in [3H]-thymidine incorporation can be prevented by the IGF-1 receptor antagonists AG1024 and I-OMe-Tyrphostin AG 538, suggesting the participation of IGF-1 in ADP-mediated progenitor proliferation. In contrast, no increase in [3H]-thymidine incorporation is observed in retinal cultures treated only with IGF-1. Under serum starvation, while no increase in cell proliferation is detected in cultures treated only with ADP or IGF-1, a significant increase in [3H]-thymidine incorporation and number of PCNA expressing cells is observed in cultures treated concomitantly with ADP plus IGF-1, suggesting that both molecules are required to induce proliferation of retinal progenitors. In serum-starved cultures, although an increase in cell viability is detected by MTT assays in IGF-1-treated cultures, no significant increase in viability of [3H]-thymidine labeled progenitors is observed, suggesting that IGF-1 may contribute to survival of postmitotic cells in culture. While only ADP increases intracellular calcium, only IGF-1 induces the phosphorylation of Akt in the retinal cultures. IGF-1 through the PI3K/Akt pathway induces a significant increase in the transcription and expression of CDK1 with a decrease in phospho-histone H3 expression that is concomitant with an increase in the expression of cyclins D1 and E and CDK2. These findings suggest that IGF-1 stimulates CDK-1 mRNA and protein expression that enable progenitors to progress through the cell cycle. However, signaling of ADP in the presence IGF-I seems to be required for DNA synthesis.

Keywords: Calcium; Cell proliferation; P2Y receptors; PI3K/Akt; Retina development.