Mapping of a Recessive Gene for All-Stage Resistance to Stripe Rust in a Wheat Line Derived from Cultivated Einkorn (Triticum monococcum)

Plant Dis. 2024 Jun 6:PDIS11232363RE. doi: 10.1094/PDIS-11-23-2363-RE. Online ahead of print.

Abstract

Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive fungal diseases of wheat. Cultivated einkorn (Triticum monococcum L. ssp. monococcum, 2n = 2x = 14, AmAm), one of the founder crops of agriculture, harbors unexploited genetic sources for wheat improvement. An advanced wheat line, Z15-1949, with 42 chromosomes, selected from the hybrids of Pst-susceptible common wheat cultivar Crocus and resistant T. monococcum accession 10-1, exhibits high resistance to a mixture of the prevalent Chinese Pst races. Genetic analysis on F1, F2, and F2:3 generations of the cross between Z15-1949 and Pst-susceptible common wheat SY95-71 indicated that the resistance of Z15-1949 was conferred by a recessive gene, tentatively designated as YrZ15-1949. This gene was mapped to the short arm of chromosome 7D using the Wheat 55K single nucleotide polymorphism array, flanked by markers KASP-1949-2 and KASP-1949-10 within a 3.3-cM genetic interval corresponding to a 1.12-Mb physical region in the Chinese Spring reference genome V2.0. The gene differs from previously reported Yr genes on 7D based on their physical positions and is probably a novel gene. YrZ15-1949 would be a valuable resource for developing Pst-resistant wheat cultivars, and the linked markers could be used for marker-assisted selection.

Keywords: Triticum monococcum; advanced line; all-stage resistance; recessive gene; wheat stripe rust.