Sorption Isotherms and Thermodynamic Characteristics of Gelatin Powder Extracted from Whitefish Skin: Mathematical Modeling Approach

Foods. 2023 Dec 26;13(1):92. doi: 10.3390/foods13010092.

Abstract

Moisture adsorption and desorption isotherms of gelatin extracted from whitefish skin powder (FSGP) at different temperatures across a wide range of water activity were determined along with their thermodynamic properties. Nine mathematical models were utilized for fitting the experimental data and simulating the adsorption and desorption behavior. The thermodynamic properties were determined and fitted to the experimental data. The results showed that Peleg and GAB models were the best fit for FSGP. The energies involved in the adsorption and desorption process of FSGP indicated a stronger dependence on equilibrium moisture content (Xe). When Xe decreased, there was a consistent trend of increasing thermodynamic properties. Both the moisture adsorption and desorption behaviors of FSGP were, therefore, non-spontaneous processes. Linear correlations between the changes in enthalpy and entropy for adsorption and desorption were observed, indicating the presence of enthalpy-entropy compensation for FSGP. For preserving FSGP quality, it should be stored with Xw ≤ 8 (gw/gdm, d.b.) at temperatures below 53 °C and an RH of 50% to avoid it becoming rubbery. These findings are crucial for providing insight into the optimal drying and storage conditions.

Keywords: differential entropy; dynamic sorption isotherms; enthalpy; fish gelatin; isosteric heat of sorption.

Grants and funding

This research received no external funding.