Neural cell diversity in the light of single-cell transcriptomics

Transcription. 2023 Jun-Oct;14(3-5):158-176. doi: 10.1080/21541264.2023.2295044. Epub 2024 Jan 23.

Abstract

The development of highly parallel and affordable high-throughput single-cell transcriptomics technologies has revolutionized our understanding of brain complexity. These methods have been used to build cellular maps of the brain, its different regions, and catalog the diversity of cells in each of them during development, aging and even in disease. Now we know that cellular diversity is way beyond what was previously thought. Single-cell transcriptomics analyses have revealed that cell types previously considered homogeneous based on imaging techniques differ depending on several factors including sex, age and location within the brain. The expression profiles of these cells have also been exploited to understand which are the regulatory programs behind cellular diversity and decipher the transcriptional pathways driving them. In this review, we summarize how single-cell transcriptomics have changed our view on the cellular diversity in the human brain, and how it could impact the way we study neurodegenerative diseases. Moreover, we describe the new computational approaches that can be used to study cellular differentiation and gain insight into the functions of individual cell populations under different conditions and their alterations in disease.

Keywords: Cell diversity; brain; gene regulatory networks; neural cells; single-cell transcriptomics.

Publication types

  • Review

MeSH terms

  • Gene Expression Profiling* / methods
  • Humans
  • Neurons / metabolism
  • Single-Cell Analysis / methods
  • Transcriptome*