Burkholderia cenocepacia epigenetic regulator M.BceJIV simultaneously engages two DNA recognition sequences for methylation

bioRxiv [Preprint]. 2024 Jan 23:2024.01.20.576384. doi: 10.1101/2024.01.20.576384.

Abstract

Burkholderia cenocepacia is an opportunistic and infective bacterium containing an orphan DNA methyltransferase (M.BceJIV) with roles in regulating gene expression and motility of the bacterium. M.BceJIV recognizes a GTWWAC motif (where W can be an adenine or a thymine) and methylates the N6 of the adenine at the fifth base position (GTWWAC). Here, we present a high-resolution crystal structure of M.BceJIV/DNA/sinefungin ternary complex and allied biochemical, computational, and thermodynamic analyses. Remarkably, the structure shows not one, but two DNA substrates bound to the M.BceJIV dimer, wherein each monomer contributes to the recognition of two recognition sequences. This unexpected mode of DNA binding and methylation has not been observed previously and sets a new precedent for a DNA methyltransferase. We also show that methylation at two recognition sequences occurs independently, and that GTWWAC motifs are enriched in intergenic regions of a strain of B. cenocepacia's genome. We further computationally assess the interactions underlying the affinities of different ligands (SAM, SAH, and sinefungin) for M.BceJIV, as a step towards developing selective inhibitors for limiting B. cenocepacia infection.

Publication types

  • Preprint