MXene-Mediated Catalytic Redox Reactions for Biomedical Applications

Chempluschem. 2024 Feb 15:e202300777. doi: 10.1002/cplu.202300777. Online ahead of print.

Abstract

Reactive oxygen species (ROS) play a crucial role in orchestrating a myriad of physiological processes within living systems. With the advent of materdicine, an array of nanomaterials has been intricately engineered to influence the redox equilibrium in biological milieus, thereby pioneering a distinctive therapeutic paradigm predicated on ROS-centric biochemistry. Among these, two-dimensional carbides, nitrides, and carbonitrides, collectively known as MXenes, stand out due to their multi-valent and multi-elemental compositions, large surface area, high conductivity, and pronounced local surface plasmon resonance effects, positioning them as prominent contributors in ROS modulation. This review aims to provide an overview of the advancements in harnessing MXenes for catalytic redox reactions in various biological applications, including tumor, anti-infective, and anti-inflammatory therapies. The emphasis lies on elucidating the therapeutic mechanism of MXenes, involving both pro-oxidation and anti-oxidation processes, underscoring the redox-related therapeutic applications facilitated by self-catalysis, photo-excitation, and sono-excitation properties of MXenes. Furthermore, this review highlights the existing challenges and outlines future development trends in leveraging MXenes for ROS-involving disease treatments, marking a significant step towards the integration of these nanomaterials into clinical practice.

Keywords: MXene; catalytic biomaterials; nanomedicine; reactive oxygen species; redox regulation.

Publication types

  • Review