Iron-doping and facet engineering of NiSe octahedron for synergistically enhanced triiodide reduction activity in photovoltaics

J Colloid Interface Sci. 2024 Jun:663:674-684. doi: 10.1016/j.jcis.2024.02.193. Epub 2024 Feb 29.

Abstract

Reasonable design of cost-effective counter electrode (CE) catalysts for triiodide (I3-) reduction reaction (IRR) by simultaneously combining heteroatom doping and facet engineering is highly desired in iodine-based dye-sensitized solar cells (DSSCs), but really challenging. Herein, the density function theory (DFT) calculations were first conducted to demonstrate that the Fe-doped NiSe (111) showed an appropriate adsorption energy for I3-, increased number of metal active sites, reinforced charge-transfer ability, and strong interaction between 3d states of metal sites and 5p state of I1 atoms in I3-, compared to NiSe (111). Based on this finding, the well-defined Fe-NiSe octahedron with exposed (111) plane (marked as Fe-NiSe (111)) and NiSe octahedron with the same exposed plane (named as NiSe (111)) are controllably synthesized. When the as-prepared Fe-NiSe (111) and NiSe (111) worked as CE catalysts, Fe-NiSe (111) exhibits improved electrochemical performance with higher power conversion efficiency (PCE) than NiSe (111), providing new opportunity to replace precious Pt for DSSCs.

Keywords: Catalytic activity; Dye-sensitized solar cells; Facet engineering; Heteroatom doping; Nickel selenide.