Theoretical Design of Strengthened Nanotwinned γ*-Boron

J Phys Chem Lett. 2024 Mar 14;15(10):2904-2910. doi: 10.1021/acs.jpclett.4c00262. Epub 2024 Mar 6.

Abstract

The distinctive electron deficiency and unusual multicenter bonding situations of boron give rise to fascinating chemical complexity and imaginative structural polymorphism. Herein, we employ an independently developed method to construct the new twinned γ*-boron based on the well-known hardest elemental boron, γ-B28. Notably, the newly propounded γ*-boron phases exhibit considerably close energy levels with γ-B28 under ambient conditions. The simulated X-ray diffraction patterns of stable twinned structure present excellent agreement with experimental data. First-principles calculations reveal a 7.5% increase in the ideal Vickers shear strength of γ*-boron compared to γ-B28, attributed to diverse bond responses within the twinned slabs. The evaluated hardness of nanotwinned γ*-B reaches 59 GPa in consideration of the size hardening effect. Our research presents an efficient strategy for constructing new polymorphs of boron with improved mechanical properties and expands the knowledge about twinning structures of boron.