Replication efficiencies of human cytomegalovirus-infected epithelial cells are dependent on source of virus production

bioRxiv [Preprint]. 2024 Mar 19:2024.03.19.585739. doi: 10.1101/2024.03.19.585739.

Abstract

Human cytomegalovirus (HCMV) is a prevalent betaherpesvirus, and infection can lead to a range of symptomatology from mononucleosis to sepsis in immunocompromised individuals. HCMV is also the leading viral cause of congenital birth defects. Lytic replication is supported by many cell types with different kinetics and efficiencies leading to a plethora of pathologies. The goal of these studies was to elucidate HCMV replication efficiencies for viruses produced on different cell types upon infection of epithelial cells by combining experimental approaches with data-driven computational modeling. HCMV was generated from a common genetic background of TB40-BAC4, propagated on fibroblasts (TB40Fb) or epithelial cells (TB40Epi), and used to infect epithelial cells. We quantified cell-associated viral genomes (vDNA), protein levels (pUL44, pp28), and cell-free titers over time for each virus at different multiplicities of infection. We combined experimental quantification with data-driven simulations and determined that parameters describing vDNA synthesis were similar between sources. We found that pUL44 accumulation was higher in TB40Fb than TB40Epi. In contrast, pp28 accumulation was higher in TB40Epi which coincided with a significant increase in titer for TB40Epi over TB40Fb. These differences were most evident during live-cell imaging, which revealed syncytia-like formation during infection by TB40Epi. Simulations of the late lytic replication cycle yielded a larger synthesis constant for pp28 in TB40Epi along with increase in virus output despite similar rates of genome synthesis. By combining experimental and computational modeling approaches, our studies demonstrate that the cellular source of propagated virus impacts viral replication efficiency in target cell types.

Keywords: Biological Networks; Computational Biology; Computational Modeling; Human Cytomegalovirus; Microbiology; Modeling Biological Systems; Systems Biology; Viral Egress; Viral Replication; Virology.

Publication types

  • Preprint