Control and Entanglement of Individual Rydberg Atoms near a Nanoscale Device

Phys Rev Lett. 2024 Mar 15;132(11):113601. doi: 10.1103/PhysRevLett.132.113601.

Abstract

Coherent control of Rydberg atoms near dielectric surfaces is a major challenge due to the large sensitivity of Rydberg states to electric fields. We demonstrate coherent single-atom operations and two-qubit entanglement as close as 100 μm from a nanophotonic device. Using the individual atom control enabled by optical tweezers to study the spatial and temporal properties of the electric field from the surface, we employ dynamical decoupling techniques to characterize and cancel the electric-field noise with submicrosecond temporal resolution. We further use entanglement-assisted sensing to accurately map magnitude and direction of electric-field gradients on a micrometer scale. Our observations open a path for integration of Rydberg arrays with micro- and nanoscale devices for applications in quantum networking and quantum information science.