A Phase II Study Evaluating the Effect of Intensity Modulated Postmastectomy Radiation Therapy on Implant Failure Rates in Breast Cancer Patients With Immediate, 2-Stage Implant Reconstruction With an MRI Imaging Correlative Substudy

Int J Radiat Oncol Biol Phys. 2024 Apr 2:S0360-3016(24)00451-6. doi: 10.1016/j.ijrobp.2024.03.031. Online ahead of print.

Abstract

Purpose: Postmastectomy radiation therapy is a mainstay in the adjuvant treatment of node-positive breast cancer, but it poses risks for women with breast reconstruction. Multibeam intensity-modulated radiation therapy improves dose conformality and homogeneity, potentially reducing complications in breast cancer patients with implant-based reconstruction. To investigate this hypothesis, we conducted a single-arm phase 2 clinical trial of breast cancer patients who underwent mastectomy/axillary dissection and prosthesis-based reconstruction.

Methods and materials: The primary endpoint was the rate of implant failure (IF) within 24 months of permanent implant placement, which would be considered an improvement over historical controls if below 16%. IF was defined as removal leading to a flat chest wall or replacement with another reconstruction. Patients were analyzed in 2 cohorts. Cohort 1 (RT-PI) received radiation therapy to the permanent implant. Cohort 2 (RT-TE) received radiation therapy to the TE. IF rates, adverse events, and quality of life were analyzed. Follow-up/postradiation therapy assessments were compared with the baseline/preradiation therapy assessments at 3 to 10 weeks after exchange surgery. A subgroup underwent serial magnetic resonance imaging (MRI) sessions to explore the association between MRI-detected changes and capsular contracture, a known adverse effect of radiation therapy.

Results: Between June 2014 and March 2017, 119 women were enrolled. Cohort 1 included 45 patients, and cohort 2 had 74 patients. Among 100 evaluable participants, 25 experienced IF during the study period. IF occurred in 8/42 (19%) and 17/58 (29%) in cohorts 1 and 2, respectively. Among the IFs, the majority were due to capsular contracture (13), infection (7), exposure (3), and other reasons (2). Morphologic shape features observed in longitudinal MRI images were associated with the development of Baker grade 3 to 4 contractures.

Conclusions: The rate of IF in reconstructed breast cancer patients treated with intensity-modulated radiation therapy was similar to, but not improved over, that observed with conventional, 3-dimensional-conformal methods. MRI features show promise for predicting capsular contracture but require validation in larger studies.