How to use CRISPR/Cas9 in plants - from target site selection to DNA repair

J Exp Bot. 2024 Apr 22:erae147. doi: 10.1093/jxb/erae147. Online ahead of print.

Abstract

A tool for precise, target-specific, efficient and affordable genome editing, it is a dream for many researchers, from those who do basic research to those who use it for applied research. Since 2012, we have the tool that almost fulfils such requirements; it is based on CRISPR/Cas systems. However, even CRISPR/Cas has limitations and obstacles that might surprise its users. In this review, we focus on the most frequently used variant, CRISPR/Cas9 from Streptococcus pyogenes, and highlight the key factors affecting its mutagenesis outcomes. Firstly, factors affecting the CRISPR/Cas9 activity, such as the effect of the target sequence, chromatin state or Cas9 variant, and how long it remains in place after cleavage. Secondly, factors affecting the follow-up DNA repair mechanisms include mostly the cell type and cell cycle phase, but also, for example, the type of DNA ends produced by Cas9 cleavage (blunt/staggered). Moreover, we note some differences between using CRISPR/Cas9 in plants, yeasts and animals, as knowledge from individual kingdoms is not fully transferable. Awareness of these factors can increase the likelihood of achieving the expected results of plant genome editing, for which we provide detailed guidelines.

Keywords: CRISPR/Cas; DNA repair; cell-cycle; cleavage; editing; mutagenesis; plants; post-cleavage trimming; staggered ends.