MicroRNA164e suppresses NAC100 transcription factor-mediated synthesis of seed storage proteins in chickpea

New Phytol. 2024 Jun;242(6):2652-2668. doi: 10.1111/nph.19770. Epub 2024 Apr 22.

Abstract

Development of protein-enriched chickpea varieties necessitates an understanding of specific genes and key regulatory circuits that govern the synthesis of seed storage proteins (SSPs). Here, we demonstrated the novel involvement of Ca-miR164e-CaNAC100 in regulating SSP synthesis in chickpea. Ca-miRNA164e was significantly decreased during seed maturation, especially in high-protein accessions. The miRNA was found to directly target the transactivation conferring C-terminal region of a nuclear-localized transcription factor, CaNAC100 as revealed using RNA ligase-mediated-rapid amplification of cDNA ends and target mimic assays. The functional role of CaNAC100 was demonstrated through seed-specific overexpression (NACOE) resulting in significantly augmented seed protein content (SPC) consequential to increased SSP transcription. Further, NACOE lines displayed conspicuously enhanced seed weight but reduced numbers and yield. Conversely, a downregulation of CaNAC100 and SSP transcripts was evident in seed-specific overexpression lines of Ca-miR164e that culminated in significantly lowered SPC. CaNAC100 was additionally demonstrated to transactivate the SSP-encoding genes by directly binding to their promoters as demonstrated using electrophoretic mobility shift and dual-luciferase reporter assays. Taken together, our study for the first time established a distinct role of CaNAC100 in positively influencing SSP synthesis and its critical regulation by CamiR164e, thereby serving as an understanding that can be utilized for developing SPC-rich chickpea varieties.

Keywords: NAC100; chickpea; microRNA164; seed protein content; seed storage proteins; transactivation.

MeSH terms

  • Base Sequence
  • Cicer* / genetics
  • Cicer* / growth & development
  • Cicer* / metabolism
  • Gene Expression Regulation, Plant*
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Plants, Genetically Modified
  • Promoter Regions, Genetic / genetics
  • Seed Storage Proteins* / genetics
  • Seed Storage Proteins* / metabolism
  • Seeds* / genetics
  • Seeds* / metabolism
  • Transcription Factors* / genetics
  • Transcription Factors* / metabolism
  • Transcriptional Activation / genetics

Substances

  • MicroRNAs
  • Transcription Factors
  • Seed Storage Proteins
  • Plant Proteins