Optical Upconversion in Mononuclear Lanthanide Co-crystal Assemblies

Chemistry. 2024 Apr 23:e202400911. doi: 10.1002/chem.202400911. Online ahead of print.

Abstract

In this work, we developed two kinds of co-crystal assemblies systems, consisting of discrete mononuclear Yb3+ and Er3+ and mononuclear Yb3+ and Pr3+, which can achieve Er3+ and Pr3+ upconversion luminescence, respectively, by Yb3+ sensitization under 980 nm excitation. The structure and composition of two co-crystal assemblies were determined by single crystal X-ray diffraction. By investigation of the series of two assemblies, respectively, it is found that the strongest upconversion luminescence is both obtained when the molar ratio of Yb3+ and Ln3+ (Ln = Er or Pr) is 1 : 1. The energy transfer mechanism of Er3+ assemblies is determined as energy transfer upconversion, while that of Pr3+ assemblies is determined as energy transfer upconversion and cooperative sensitization upconversion. This is the first example of Pr3+ upconversion luminescence at the molecular dimension at room temperature, which enriches the research in the field of upconversion luminescence with lanthanide complexes.

Keywords: co-crystal assembly * lanthanide complex * Pr3+ and Er3+ upconversion luminescence * molecular upconversion.