Ab-initio transport model to study the thermoelectric performance of MoS2, MoSe2, and WS2monolayers by using Boltzmann transport equation

J Phys Condens Matter. 2024 May 7;36(31). doi: 10.1088/1361-648X/ad4225.

Abstract

The potential for thermoelectric applications of two-dimensional materials is quite promising. Usingab-initiocalculations, we have investigated the electronic band structure, phonon band structure, electronic density of states, and phonon density of states of monolayers MoS2, MoSe2, and WS2. In order to compute the thermoelectric properties of monolayers MoS2, MoSe2, and WS2, we used theab-initiomodel suggested by Faghaniniaet al(2015Phys. Rev.B91235123). Within this model, by using inputs from density functional theory and considering all relevant elastic and inelastic scattering mechanisms, we have calculated the thermoelectric properties of monolayers MoS2, MoSe2, and WS2over various ranges of temperature (T) and carrier concentration (n). The obtained results of Seebeck coefficients (S) and figure of merit (ZT) atT= 300 K for bothn/p-types of monolayers MoS2, MoSe2, and WS2are in good agreement with the findings obtained by other models using the Boltzmann transport equation within a constant relaxation time framework.

Keywords: MoS2; MoSe2; WS2; phonons; thermoelectric properties.